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LETTER TO THE EDITOR 

Fallacies in the understanding of the quenching of the 
Hall effect: I 

Vipin Srivastava 
School of Physics, University of Hyderabad, Hyderabad-500 134, India 

Received 20 December 1988 

Abstract. A rigorous classical calculation of the Hall effect is done for quasi-one-dimensional 
systems in weak magnetic fields. The final outcome dispels the notion that the observed 
quenching of the Hall effect in such systems could arise because of the electrons impinging 
frequently against the two edges of the system. The condition for the quenching is derived 
but it turns out to be too strict to be feasible. 

A curious new experimental result, commonly known as ‘quenching of the Hall effect’ 
[ 1,2], has revealed that the Hall voltage in quasi-one-dimensional (ID) systems does not 
build up as soon as the magnetic field, B,, is switched on (in the usual geometry, with 
the system being in the xy plane, the current in the x direction and B in the normal, z 
direction) at low temperatures ( T  = 0 K); it begins to develop only for B ,  > Bznt, where 
&fl* is of the order of 0.1 T. Two attempts have been made to explain this phenomenon. 
Beenakker and van Houten [3], on one hand, have proposed a semi-classical explanation 
which in simple terms suggests that so long as the edge states are suppressed because of 
the electrons on their traversing trajectories colliding randomly against the upper and 
the lower edges, the Hall voltage will not be developed. On the other hand, the author 
[4] has put forward a quantum mechanical argument that is based on a subtle Josephson- 
type effect predicted (previously, [5]) to be present in narrow Hall samples. 

In order to ascertain if a classical/semi-classical explanation of the effect in question 
would be constrained by any severe requirement, and if it does, then whether such a 
requirement could possibly be fulfilled, we first do a very systematic classical analysis 
following Pippard [6] for the conditions pertinent to the above experiments, and then, 
in a future publication, we will present a semi-classical analysis based on the ideas of 
‘skipping orbits’ given in [7]. Both the analyses indicate that the normal Hall effect 
should be observed under the conditions mentioned above in case one confines oneself 
to the classical or semi-classical framework. Thus it is necessary that one must go beyond 
it, to understand the phenomenon of quenching of the Hall effect, as has been done by 
the author in [4]. 

We are concerned with the low-field behaviour, when B, is so small that the smallest 
cyclotron orbit diameter is greater than the width of the quasi-ir, system. Then every 
trajectory starts and finishes on one edge or the other. We define the parameter p = 
w/R where w is the width of the system and R is the radius of the cyclotron orbit; for 
narrow systems at small B, we have p 4 1. In figure 1 two types of trajectory are shown 
reaching the lower edge at the origin of coordinates 0; the grazing orbit that separates 
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Figure 1. The experimental arrangement of the 
qUaSi-lD sample and examples of different tra- 
jectories running along an edge as well as between 
the edges. 1~ is the angle corresponding to the 
grazing orbit. 

Figure 2. Orbits of a free electron in momentum 
space: (a )  totalorbit; (b )  orbits truncated because 
of reflections at the edges; and (c) skipping orbits 
along an edge. The shaded area indicates the por- 
tion traversed by the k-vector as an electron goes 
from one edge to the other. 

them is also shown. We shall be concerned only with the electrons as they reach and 
leave the edges, where the potential is ' V ,  - E,x (where the 2V0 E Hall voltage, and 
E, is the electric field in the x direction in the plane of the system). We are interested in 
obtaining the condition under which V ,  will vanish. 

It is easy to check that 

p = COS q - COS 8 

xo = R(sin 8 - sin q). 

x1 = 2R sin 8. 

(1) 

(2) 

(3) 

and that the orbit that spans the entire width leaves the upper edge at x ,  where 

If the orbit both starts and finishes on the lower edge, it starts at xl, where 

Anywhere in the quasi-iD system the departure from equilibrium of the electron distri- 
bution is specified by the displacement, measured as an energy E ,  of the Fermi level at 
each point on the Fermi surface. The E ,  averaged over the Fermi surface, must vanish 
to ensure the space-charge neutrality. 

Suppose there are no internal collisions? and that the electrons leaving the upper 
edge have energy - E '  and those leaving the lower edge have energy E ' ;  E'  is to be found 
by requiring that the normal current, J y  in the present geometry, shall vanish. For 
0 < 8 < 'IC, ('IC, being the value of 8 for the grazing orbit in figure l ) ,  electrons leave the 
lower edge with kinetic energy E' and regain it with E '  - eExx l ,  having suffered a 
potential energy increase of eExxl. If 'IC, < 8 < n, they come from the upper edge and 
arrive at the lower edge with kinetic energy - E '  - 2eVo - eE,xo. If we include the 
possibility of specular reflections (see, for example, [SI) from the edges and introducep 
as the probability that an electron after hitting an edge is reflected specularly then the 
expressions of kinetic energy are modified as follows. 

Consider first the situation where 0 < 8 < p. From an arbitrary point on the lower 
edge a fraction p of electrons is specularly reflected and suppose the fraction (1 - p )  
goes a distancex, along the same edge. Thenp(1 - p )  will reach a distance 2x1 after the 
t This is a valid assumption in the present context where the electron movement is believed to be ballistic 
~ 3 1 .  
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specular reflection at x l ,  p2(1 - p )  will go 3x1, and so on. Thus the average distance an 
electron can reach in this manner will be 

XI = X l ( l  -p)( l  + 2p + 3p2 + , . . )  = xJ(1 - p )  

E(8) = E’ - 2eE,R sin 8 / ( l  - p )  

(4) 

( 5 )  

i.e. it increases by a factor (1 - p ) - ’  owing to the specular reflections. So we get 

for0 < 8 < v .  
Further, in the case I$ < 8 < n where the electrons are scattered from both the edges 
alternately, suppose (1 - p )  come from top at xg onto the bottom edge. These come with 
the kinetic energy --E‘ - 2eVo - eE,xo. On specular reflection from the bottom edge at 
2xo, p(1 - p )  go up to the top edge with kinetic energy E ’  - 2eE,xo. Thus p2( l  - p ) ,  
p4(l - p ) ,  . . . are reflected specularly from the top at 3xo, 5 x 0 , .  . . respectively and 
p3(l - p ) ,  ps ( l  - p ) ,  . . . are reflected from the bottom at 4xo, 6x0, . . . respectively. 
Adding the kinetic energies contributed by top and the bottom edges, we get 

&(e)  = (I - p ) [ ( - ~ ’  + p e r  - p 2 e ‘  + p 3 & ’  - .  . .) - 2eVo(I + p 2  + p 4  + .  . .) 
- eE,xo(l + 2p + 3p2 + . . .)] 

= - ~ ’ ( l  -p)/(l + p )  - 2eVo/( l  + p )  - eE,R(sin 8 - sin q)/( l  - p ) .  
(6) 

For the quasi-iD channel of interest here, 

p = W / R  = cos pl - cos e = o 
sothat q = 8 + 2nn,i .e.  sin 6 =sin rp. Also,for 8 < v ,  cos q = 1 - p =  1 ( fo rp  = 0 ) ,  
i.e. = 0, and the smaller W is, the closer p will be to 1 for small angles of incidence 
(8  c: v) .  Thus, as sin 8 --j 0, (1 - p )  + 0. Consequently, for the system of interest, 

Note that p may not be close to unity for v < 8 < n when the trajectories run between 
the edges. 

In order to determine E’ and E, in terms of V0 we require that there shall be charge 
neutrality at the edges and that J y  shall also vanish at the edges. If the latter is achieved 
J y  automatically vanishes everywhere, but internal charge neutrality is not automatic. 
However, the local value of V adjusts itself everywhere to shrink or expand the Fermi 
surface uniformly until neutrality is reached. 

For the charge neutrality at the edges we impose 

lon ~ d 8  = 0 
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and for (7) this gives 

( E ’  - 2eE,R)/3 = {[(l - p ) ~ ’  + 2eVo]/(1 + p ) } ( p  - 2) 

E ‘  = -2evo/(1 - p ) .  

(10) 

(9’) 

or, for p = 0, 

Finally we determine the total current to obtain the resistance. Associated with 
the displacement of the Fermi surface by E ( 8 )  there is an excess number of carriers 
n& 68/(2nEF) due to the elements 68 each having momentump, = muF sin 8 and mov- 
ing with velocity uF sin 8 in the y direction (here n is the number of electrons per unit 
area) [6]. These electrons convect in a positive direction to increase the momentum at 
the rate 

At the same time the Hall field increases P, by 2neVo and the Lorentz force increases it 
by BJ,, where Z, is the total current. In the steady state, the net change must vanish, i.e. 

B,Z, + 2neVo + (2n/n) E sin2 8 d 8 = 0. (12) lon 
This gives for E (  e )  as in (7), 

B,Z, + 2neVo - n[(l  - p ) ~ ’  + 2eVo]/(l + p )  = 0 
or 

Z, = -2neVo/B, (13) 
using E ’  = -2eVo/(l - p )  from (9) and (9’). Thus in (13) we obtain the normal Hall 
effect in our quasi-iD system for small B,. We therefore concluded that the simple and 
straightforward classical considerations allowing electrons to impinge freely against the 
two closely placed edges of a quasi-ir, system yield nothing spectacular over and above 
the normal Hall effect even if we allow the reflections from the edges to be specular with 
non-zero probability. However, in the limiting situation of p = 1, the Vo will vanish 
according to (9). That is, if the reflections from the two edges are specular withprobability 
one for any angle of incidence, then the Hall voltage, Vo, can vanish and the quenching 
of the Hall effect can happen. We feel this condition is too stringent to be fulfilled in an 
actual experiment. An infinitesimal deviation in value ofp from 1 on one of the collisions 
with an edge will build up on the subsequent collisions and will result in the development 
of a Hall voltage. This will happen with much ease with almost all the trajectories except 
those that are incident on an edge at very small angles (8  - 0) .  

The above arguments can alternatively be summarised as follows. The movement of 
a free electron can be described in k-space by the movement of the radius vector k about 
the origin (see figure 2). In a narrow system like ours k traces only small segments of the 
circle such as those shown by the shaded portions. Suppose k changes from an arbitrary 
value k to k + 6k as the electron moves from one edge to the other and then a specular 
reflection occurs that keeps k, unchanged both in direction and magnitude and reverses 
the direction of k, but leaves its magnitude unchanged. Now the k-vector changes from 
k + 6k to k and the electron moves back to the first edge and again encounters a specular 
reflection. If this corresponds to the change in angle (between k and the x axis) from 8 
to 8 + d 8,  and vice versa, then 

6u,  = ko(sin(8 + d e )  - sin 8 )  = -+ U cos 8 d e  (14) 
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taking sin(d 6)  = d 8 and cos(d 6) = 1 for very small d 8. As long as all the trajectories, 
irrespective of their angle of incidence on an edge, undergo specular reflections after 
each collision with the edges, i.e. all reflections are specular with probability 1, then the 
positive and negative values of Su, will be exactly equal individually for each trajectory 
and the net transfer of charge from one edge to the other will be zero. It is clear that this 
condition is too ideal to be strictly obeyed in an experiment. 

In conclusion, we show that the quenching of the Hall effect in quasi-iD systems 
cannot be understood to be occurring merely because of frequent impinging of the 
electrons against the two edges of the system. Within this classical framework the Hall 
effect can be quenched under the extreme ideal condition where all the collisions of the 
electrons with the edges of the system result in specular reflections with Probability 1. 

I am grateful to Professor Sir A B Pippard for numerous discussions and for allowing 
access to the manuscript of his book on magnetoresistance ( [ 6 ] ,  unpublished at that time) 
which forms the basis for the present calculation. Thanks are due to Professor Sir S F 
Edwards for hospitality at the Cavendish Laboratory where this work was done, and to 
Professors M Pepper and V Srinivasan for discussions. Arguments based on figure 2 
resulted out of discussions with Professor Pepper. 
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